Remember to refer to the Periodic Table handout that is separate from this exam copy.

NOTE: Please keep this exam copy intact (all pages still stapled including this cover page). You must turn in ALL the materials that were distributed. This means that you turn in your exam copy (name and signature included), bubble sheet, periodic table handout, and all scratch paper. Please also have your UT ID card ready to show as well.

This print-out should have 20 questions. Multiple-choice questions may continue on the next column or page - find all choices before answering.

0015.0 points

A 19.7 g sample of an unknown salt (formula $=\mathrm{MX}_{2}$) is dissolved in 249.4 mL water. The boiling point of water in this solution is $100.657^{\circ} \mathrm{C}$. What is the molecular weight of the unknown salt?

1. $129.8 \mathrm{~g} / \mathrm{mol}$
2. $61.6 \mathrm{~g} / \mathrm{mol}$
3. $55.4 \mathrm{~g} / \mathrm{mol}$
4. $185 \mathrm{~g} / \mathrm{mol}$
5. $46.1 \mathrm{~g} / \mathrm{mol}$

0025.0 points

Consider two ionic compounds that dissolve fully in water at room temperature. You run an experiment and determine the following:

1. Compound A has stronger solute-solute attractions than solute-solvent attractions.
2. Compound B has stronger solute-solvent attractions than solute-solute attractions.

Which of the following best describes the $\Delta H_{\text {solution }}$ for Compound A and Compound B , respectively?

1. Endothermic, exothermic
2. Exothermic, exothermic
3. Exothermic, endothermic
4. Both processes are endothermic, but Compound A is more endothermic
5. Both processes are exothermic, but Compound B is more exothermic
6. Both processes are equally exothermic

0035.0 points

Consider the following generic gas phase reaction.

$$
\mathrm{X}_{2}(\mathrm{~g})+3 \mathrm{Y}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{XY}_{3}(\mathrm{~g})
$$

The value of K_{p} for this reaction is 107. Calculate the equilibrium partial pressure of gas Y_{2} if the equilibrium partial pressures of XY_{3} is 0.50 atm and X_{2} is 0.15 atm ?

1. 0.031 atm
2. 0.18 atm
3. 0.42 atm
4. 0.33 atm
5. 5.6 atm
6. 0.016 atm
7. 0.25 atm

0045.0 points

Write the equilibrium constant for the following reaction.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\ell) \rightleftharpoons 2 \mathrm{HBr}(\mathrm{~g})
$$

1. $K_{p}=\frac{P_{\mathrm{HBr}}}{P_{\mathrm{H}_{2}}}$
2. $K_{p}=\frac{P_{\mathrm{HBr}}^{2}}{P_{\mathrm{H}_{2}}}$
3. $K_{p}=\frac{P_{\mathrm{HBr}}^{2}}{P_{\mathrm{H}_{2}}\left[\mathrm{Br}_{2}\right]}$
4. $K_{p}=\frac{P_{\mathrm{H}_{2}}}{P_{\mathrm{HBr}}^{2}}$
5. $K_{p}=\frac{P_{\mathrm{HBr}}^{2}}{P_{\mathrm{H}_{2}} P_{\mathrm{Br}_{2}}}$
$005 \quad 5.0$ points
Isocarboxazid ($\mathrm{MW}=231.25 \mathrm{~g} / \mathrm{mol}$) is an organic monoamine oxidase inhibitor used to
treat depression disorders. 38.00 grams of isocarboxazid are added to water to make a 350 mL aqueous solution. What is the osmotic pressure exerted by this solution across a semi-permeable membrane at $37^{\circ} \mathrm{C}$?
6. 1.43 atm
7. 12.10 atm
8. 329.6 atm
9. 23.90 atm
10. 144.4 atm
11. 11.95 atm

0065.0 points

A and B are mildly volatile solvents. A mixture is made by combining 2 moles of A with 3 moles of B. Interpret the diagram below to determine the vapor pressure of this mixture.

1. 110 Torr
2. 100 Torr
3. 140 Torr
4. 80 Torr
5. 70 Torr
6. 120 Torr
7. 90 Torr
8. 150 Torr
9. 130 Torr

$007 \quad 5.0$ points

A sample of 44.1 g of para-dichlorobenzene $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2} \quad 147.0 \mathrm{~g} / \mathrm{mol}\right)$ is dissolved into 350 mL of hexane $\left(\mathrm{C}_{6} \mathrm{H}_{14}, 86.18 \mathrm{~g} / \mathrm{mol}\right.$, density $0.661 \mathrm{~g} / \mathrm{mL}$). What is the molality of this solution?

1. 0.101 m
2. 0.567 m
3. 1.17 m
4. 0.857 m
5. 1.30 m

$008 \quad 5.0$ points

Calculate the number of moles of oxygen that will dissolve in 45 L of water at $20^{\circ} \mathrm{C}$ if the partial pressure of oxygen is 0.21 atm . Henry's constant for oxygen is $0.0013 \mathrm{M} / \mathrm{atm}$.

1. 0.0062 mol
2. 0.0013 mol
3. 0.012 mol
4. 0.00027 mol
5. 0.28 mol

$009 \quad 5.0$ points

The following diagram shows a solution on the left (dark shade) and just the solvent on the right (light shade) separated by a semipermeable membrane.

Which diagram best represents the final state of this system after equilibrium is achieved?
1.

2.

3.

4.

5.

010
5.0 points

Consider the following substances: acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$, propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$, and acetone $\left(\mathrm{CH}_{3} \mathrm{COCH}_{3}\right)$. The boiling points (in no particular order) are $-42^{\circ} \mathrm{C}, 56^{\circ} \mathrm{C}$, and $118^{\circ} \mathrm{C}$. The vapor pressures (in no particular order) are 225 Torr, 15 Torr, and 6400 Torr. What is the boiling point and vapor pressure for acetic acid?

1. $118^{\circ} \mathrm{C}, 15$ Torr
2. $-42^{\circ} \mathrm{C}, 6400$ Torr
3. $-42^{\circ} \mathrm{C}, 15$ Torr
4. $118^{\circ} \mathrm{C}, 6400$ Torr
5. $56^{\circ} \mathrm{C}, 225$ Torr

$011 \quad 5.0$ points

A reaction has a negative change in entropy. This reaction can only be spontaneous if...

1. None of these choices are correct because a reaction with a negative change in entropy can never be spontaneous
2. heat is released at a sufficiently low temperature
3. heat is absorbed by the system at any temperature
4. heat is released at any temperature
5. heat is absorbed at a sufficiently high temperature

0125.0 points

Which of the following solutions have a boiling point equal to a $1.12 \mathrm{~m} \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$ aqueous solution? Assume all solutions are aqueous and all salts dissolve completely.
I. 4.48 m glucose
II. $1.12 m \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$
III. $2.24 m \mathrm{KNO}_{3}$
IV. $2.24 m \mathrm{CaCl}_{2}$

1. I, II, III, and IV
2. I and III only
3. I only
4. I and II only
5. II and IV only
6. II only
$013 \quad 5.0$ points
Two liquids mix spontaneously at $180^{\circ} \mathrm{C}$. At room tempearture, the liquids separate into two layers instead of mixing. Which of the following is true for the process of mixing at
room temperature?
7. $\Delta H<T \Delta S$
8. $\Delta G<0$
9. $\Delta S<0$
10. $\Delta H<0$
11. $\Delta H>T \Delta S$

$014 \quad 5.0$ points

A given reaction is found to have an equilibrium constant $K_{\mathrm{p}}=2.29$. What is the equilibrium constant for the REVERSE reaction?

1. 0.326
2. -2.29
3. 0.897
4. More information is needed.
5. 0.437
6. 2.29

$015 \quad 5.0$ points

Consider the following reactions at 550 K :

$$
\begin{array}{cc}
\text { Reaction } & K_{p} \\
2 \mathrm{HI}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) & 9.1 \times 10^{-3} \\
2 \mathrm{HBr}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) & 1.1 \times 10^{-11} \\
2 \mathrm{HCl}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) & 2.6 \times 10^{-19}
\end{array}
$$

Beginning with equal starting conditions, which compound will produce the greatest amount of hydrogen gas?

1. Each reaction will produce the same quantity of hydrogen gas

4. HCl

$016 \quad 5.0$ points

The enthalpy of vaporization of a liquid is measured to be about $28.4 \mathrm{~kJ} / \mathrm{mol}$ and its normal boiling point is $128^{\circ} \mathrm{C}$. At what temperature is the partial pressure of this substance 1180 torr?

1. $162^{\circ} \mathrm{C}$
2. $181^{\circ} \mathrm{C}$
3. $-281^{\circ} \mathrm{C}$
4. $-381^{\circ} \mathrm{C}$
5. $176^{\circ} \mathrm{C}$
6. $-7.92^{\circ} \mathrm{C}$
7. $150^{\circ} \mathrm{C}$

017 (part 1 of 2) 5.0 points

Use the following phase diagram for the next two questions.

What is the normal melting point for this substance? Note: the vertical axis is logarithmic in scale.

1. $0^{\circ} \mathrm{C}$
2. $150^{\circ} \mathrm{C}$
3. HI
4. $45^{\circ} \mathrm{C}$
5. $20^{\circ} \mathrm{C}$
6. $75^{\circ} \mathrm{C}$
7. $120^{\circ} \mathrm{C}$

018 (part 2 of 2) 5.0 points

A sample of this substance is held at 0.1 atm and $-50^{\circ} \mathrm{C}$. The sample is pressurized to 3 atm and then heated to $250^{\circ} \mathrm{C}$. In total, what phase transitions occurred?

1. melting and freezing
2. sublimation only
3. melting and boiling
4. sublimation and condensation
5. melting and condensation

0195.0 points

Which of the following statements is/are true at the normal boiling point for a given substance?
I. The vapor pressure of the substance equals the applied pressure
II. The free energy of the gas phase is equal to the free energy of the liquid phase
III. The free energy of the solid, liquid, and gas phases are all equal
IV. $\Delta H_{\text {vap }}^{\circ}=0$

1. I, II, and IV only
2. I and IV only
3. I and II only
4. I only
5. II only
6. I and III only

$020 \quad 5.0$ points

You measure the boiling points for three unique aqueous solutions with unknown concentrations. The data is shown below:

KCl solution, $T_{b}=100.379^{\circ} \mathrm{C}$
CaCl_{2} solution, $T_{b}=100.113^{\circ} \mathrm{C}$
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ solution, $T_{b}=100.217^{\circ} \mathrm{C}$
Which of these solutions is expected to have the lowest freezing point?

1. KCl solution
2. The freezing point will be equal for all solutions
3. CaCl_{2} solution
4. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ solution
